
Core stucture
The structure of our model.
1. Input Orchestrator
import un1ty # Load pre-trained model for input classification tokenizer = un1ty.load_tokenizer("bert-base-uncased") model = un1ty.load_model("bert-base-uncased") # Analyze input prompt input_prompt = "Write a Python script to analyze data and summarize the results." inputs = tokenizer(input_prompt, return_tensors="pt") # Classify input for task routing outputs = model(**inputs) task_type = "code_generation" if outputs.logits[0][0] > 0.5 else "text_generation" print(f"Task Type: {task_type}")
2. Model Integration Layer
3. Collaboration Engine
4. Output Synthesizer
5. Feedback Loop
6. Scalability and Modularity
7. User-Centric Design
Last updated
