Page cover

Core stucture

The structure of our model.

1. Input Orchestrator

  • Purpose: Analyzes user inputs to determine the best task routing and splits complex tasks into sub-tasks for specialized models.

  • Key Features:

    • Uses a pre-trained model (e.g., BERT) to classify input prompts.

    • Routes tasks to the appropriate model based on the classification (e.g., code generation or text generation).

  • Example:

    import un1ty
    
    # Load pre-trained model for input classification
    tokenizer = un1ty.load_tokenizer("bert-base-uncased")
    model = un1ty.load_model("bert-base-uncased")
    
    # Analyze input prompt
    input_prompt = "Write a Python script to analyze data and summarize the results."
    inputs = tokenizer(input_prompt, return_tensors="pt")
    
    # Classify input for task routing
    outputs = model(**inputs)
    task_type = "code_generation" if outputs.logits[0][0] > 0.5 else "text_generation"
    print(f"Task Type: {task_type}")

2. Model Integration Layer

  • Purpose: Connects Hybr1d to external AI models like Shapesh1ft, gh0st, and N3O and ensures seamless communication between them.

  • Key Features:

    • Optimizes API calls for speed and efficiency.

    • Routes tasks to the most suitable model (e.g., Shapesh1ft for creative writing, gh0st for summarization).

  • Example:

    import un1ty
    
    # Route input to Shapesh1ft for creative writing
    def generate_with_shapesh1ft(prompt):
        response = un1ty.shapesh1ft.generate(
            prompt=prompt,
            max_tokens=500
        )
        return response.text
    
    # Route input to gh0st for summarization
    def summarize_with_gh0st(text):
        response = un1ty.gh0st.summarize(
            text=text,
            max_tokens=100
        )
        return response.summary
    
    # Example usage
    creative_text = generate_with_shapesh1ft("Write a story about a futuristic city.")
    summary = summarize_with_gh0st(creative_text)
    print(summary)

3. Collaboration Engine

  • Purpose: Combines outputs from multiple AI models into a single, cohesive result.

  • Key Features:

    • Resolves conflicts between model outputs.

    • Enhances outputs for consistency and quality.

  • Example:

    import un1ty
    
    # Combine outputs from Shapesh1ft and gh0st
    def combine_outputs(shapesh1ft_output, gh0st_output):
        combined_output = un1ty.collaborate(
            creative_text=shapesh1ft_output,
            summary=gh0st_output
        )
        return combined_output
    
    # Example usage
    shapesh1ft_output = un1ty.shapesh1ft.generate("Explain the concept of quantum computing.")
    gh0st_output = un1ty.gh0st.summarize(shapesh1ft_output)
    final_output = combine_outputs(shapesh1ft_output, gh0st_output)
    print(final_output)

4. Output Synthesizer

  • Purpose: Refines and formats the final output for usability and quality.

  • Key Features:

    • Adds metadata, translations, or documentation as needed.

    • Ensures outputs are polished and ready for use.

  • Example:

    import un1ty
    
    # Translate output to Spanish
    def translate_to_spanish(text):
        translation = un1ty.translate(
            text=text,
            target_language="es"
        )
        return translation
    
    # Example usage
    translated_output = translate_to_spanish("This is a sample output from Hybr1d.")
    print(translated_output)

5. Feedback Loop

  • Purpose: Collects user feedback to improve future outputs and adapts to user preferences over time.

  • Key Features:

    • Ensures continuous improvement of the platform.

    • Records user ratings and adjusts outputs accordingly.

  • Example:

    import un1ty
    
    # Collect user feedback and improve future outputs
    def collect_feedback(output, user_rating):
        un1ty.feedback.learn(
            output=output,
            rating=user_rating
        )
        return "Feedback recorded. Thank you!"
    
    # Example usage
    feedback = collect_feedback("Sample output from Hybr1d.", user_rating=4.5)
    print(feedback)

6. Scalability and Modularity

  • Purpose: Designed to be scalable and modular for easy integration of new AI models.

  • Key Features:

    • Ensures the platform remains cutting-edge as new technologies emerge.

    • Supports future expansion and customization.

  • Example:

    import un1ty
    # Add a new AI model to the framework
    def add_new_model(model_name, api_key):
        un1ty.integrate_model(
            name=model_name,
            api_key=api_key
        )
        return f"Model {model_name} integrated successfully."
    
    # Example usage
    add_new_model("N3O", "your-api-key-here")

7. User-Centric Design

  • Purpose: Prioritizes intuitive and easy-to-use interfaces and adapts to user preferences for personalized outputs.

  • Key Features:

    • Ensures a seamless and enjoyable user experience.

    • Personalizes outputs based on user preferences (e.g., tone, language).

  • Example:

    import un1ty
    
    # Personalize output based on user preferences
    def personalize_output(output, user_preferences):
        personalized_output = un1ty.personalize(
            output=output,
            preferences=user_preferences
        )
        return personalized_output
    
    # Example usage
    user_preferences = {"tone": "formal", "language": "French"}
    output = "This is a sample output from Hybr1d."
    personalized_output = personalize_output(output, user_preferences)
    print(personalized_output)

Last updated